The correct option is
A π3√3∫10dxx2+x+1=∫10dxx2+x+14−14+1=∫10dx(x+12)2−14+1
=∫10dx(x+12)2+34
=⎡⎢
⎢
⎢
⎢
⎢
⎢⎣1(√32)tan−1⎛⎜
⎜
⎜
⎜⎝x+12√32⎞⎟
⎟
⎟
⎟⎠⎤⎥
⎥
⎥
⎥
⎥
⎥⎦10
=[2√3tan−1(2x+1√3)]10
=2√3[tan−1√3−tan−11√3]
=2√3[π3−π6]
=2√3(π6)
=π3√3
Hence the correct answer is (B)π3√3.