We have,
∫205x+1x2+4dx
I=52∫202xx2+4dx+∫20dxx2+4
Let
x2+4=t2xdx=dtt=4t=8
∫dxa2+x2=1atan−1(xa)+C
Therefore,
⇒52∫20dtt+∫20dx(2)2+x2⇒52[logt]84+[12tan−1(x2)]20⇒52[log8−log4]+[12tan−1(1)−12tan−1(0)]⇒52log(84)+12(π4)−12(0)⇒52log2+π8
Hence, this is the answer.