∫a0 ln(cot a +tan x)dx, where a ϵ(0,π2) is
a in (sin a)
-a In (sin a)
– a In (cos a)
None of these
I=∫a0Incos(a−x)sina.cosxdx=∫a0Incosxsinacos(a−x)dx Adding 2I=∫a0In1sin2adx=∫a0−2Insinadx=−2 a In sin a
I=∫a0ln(cot a+tan x)dx, where aϵ(0,π2), then I is equal to