Consider the given function,
y=∫a0x2(a−x)32dx
y=∫a0(x−a)2(a−(a−x))32dx=
y=∫a0(x−a)2(x)32dx
y=∫a0(x2+a2−2ax)(x)32dx
y=∫a0⎛⎜⎝x2.x32+a2.x32−2ax.x32⎞⎟⎠dx
y=∫a0⎛⎜⎝x72+a2.x32−2ax32⎞⎟⎠dx
y=∫a0x72+a∫a0x32dx−2a∫a0x32dx
=⎡⎢ ⎢ ⎢ ⎢⎣2x929+a2.5x522−2a.5x522⎤⎥ ⎥ ⎥ ⎥⎦a0+C
=⎡⎢ ⎢ ⎢ ⎢⎣2a929+a2.5a522−2a.5a522⎤⎥ ⎥ ⎥ ⎥⎦+C
=41a922+C
Hence, this is the answer.