wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

π40sin2x.cos2x(sin3x+cos3x)2dx=m6.Find m

Open in App
Solution

I=sin2x.cos2x(sin3x+cos3x)2dx
=sin2x.cos2xdxcos6x(tan3x+1)2
I=tan2x.sec2xdx(1+tan3x)2
Substitute 1+tan3x=Z
dZ=3tan2x.sec2xdx
Now,
I=133tan2x.sec2xdx(1+tan3x)2


I=13dZZ2=13Z+c

=13(1+tan3x)+c(1)

Now,
I=π40sin2x.cos2x(sin3x+cos3x)2dx
=[13×1(1+tan3x)]π40(from(1))
=13×11+1+1311+0
=1316

I=16

m=1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 7
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon