wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

π20sin2xsinx+cosxdx=122log(22+3)

Open in App
Solution

0π/2sin2xsinx+cosxdx
0π/2(1cos2x)/2sinx+cosxdx
=121sinx+sinxdxI1cos2xsinx+cosxdxI2
I11sinx+cosxdx is tanx2
21+2μμ2dμ
=21(μ1)2+2
=22(In|(μ1)/21|2In|(μ1)/2|12)
=2⎢ ⎢ ⎢ ⎢ ⎢ ⎢12In∣ ∣(tanx/212+1)∣ ∣12 Intanx12⎥ ⎥ ⎥ ⎥ ⎥ ⎥
I2cos2xsinx+cosxdx
=cos2xsin2xsinx+cosxdx=(cosxsinx)dx
=sinx+cosx
22 Intanx+12 Intanx/212sinx+cos
I1212⎜ ⎜ ⎜ ⎜ ⎜ ⎜In(12+1) In(12+1)2⎟ ⎟ ⎟ ⎟ ⎟ ⎟1
I=In(322)22
=122In(322)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Logarithmic Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon