The correct option is
D Is equal to zero
Let: lnx=t⇒x=et
⇒1xdx=dt
As "x" varies from 0 to ∞ "lnx [t]" varies −∞ to ∞.
Now,
∫∞0f(x+1x).lnxxdx
⇒∫∞−∞f(et+e−t).tdt=F(t)
Now,
Using properties of definite integral:
Here we can see above function is an odd function i.e F(−t)=−F(t)
therefore on integrating from −∞ to ∞ sum of area of odd function is zero.
⇒∫∞−∞f(et+e−t).tdt=0
Thus,
∫∞0f(x+1x).lnxxdx=0
Hence, correct option is "A"