1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Integration Using Substitution
∫ 0 π /2 cos ...
Question
∫
π
/
2
0
cos
2
x
(
sin
x
+
cos
x
)
2
d
x
=
.
.
.
.
.
.
A
π
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
π
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
−
π
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
B
0
I
=
∫
π
/
2
0
cos
2
x
(
sin
x
+
cos
x
)
2
d
x
=
∫
π
/
2
0
cos
2
x
1
+
2
sin
x
cos
x
d
x
(
∴
c
o
s
2
x
+
s
i
n
2
x
=
1
)
=
∫
π
/
2
0
cos
2
x
1
+
sin
2
x
d
x
1
2
∫
π
/
2
0
d
d
x
(
1
+
sin
2
x
)
1
+
sin
2
x
d
x
(
∴
s
u
b
s
t
i
t
u
t
e
c
o
s
2
x
=
1
+
s
i
n
2
x
)
=
1
2
[
log
|
1
+
sin
2
x
|
]
π
/
2
0
=
1
2
[
log
1
−
log
1
]
∴
I
=
0
Suggest Corrections
0
Similar questions
Q.
Assertion :
∫
π
/
4
0
cos
x
+
sin
x
cos
2
x
+
sin
4
x
d
x
=
π
4
+
1
2
√
3
log
(
2
+
√
3
)
=
I
Reason:
I
=
∫
1
0
d
x
1
−
x
2
+
x
4
Q.
Verify Rolle's theorem for each of the following functions on the indicated intervals
(i) f(x) = cos 2 (x − π/4) on [0, π/2]
(ii) f(x) = sin 2x on [0, π/2]
(iii) f(x) = cos 2x on [−π/4, π/4]
(iv) f(x) = e
x
sin x on [0, π]
(v) f(x) = e
x
cos x on [−π/2, π/2]
(vi) f(x) = cos 2x on [0, π]
(vii) f(x) =
sin
x
e
x
on 0 ≤ x ≤ π
(viii) f(x) = sin 3x on [0, π]
(ix) f(x) =
e
1
-
x
2
on [−1, 1]
(x) f(x) = log (x
2
+ 2) − log 3 on [−1, 1]
(xi) f(x) = sin x + cos x on [0, π/2]
(xii) f(x) = 2 sin x + sin 2x on [0, π]
(xiii)
f
x
=
x
2
-
sin
π
x
6
on
[
-
1
,
0
]
(xiv)
f
x
=
6
x
π
-
4
sin
2
x
on
[
0
,
π
/
6
]
(xv) f(x) = 4
sin
x
on [0, π]
(xvi) f(x) = x
2
− 5x + 4 on [1, 4]
(xvii) f(x) = sin
4
x + cos
4
x on
0
,
π
2
(xviii) f(x) = sin x − sin 2x on [0, π]