The correct option is A 0
Let I=∫π/20sinx−cosx1−sinxcosxdx ....(i)
On putting x=(π2−x) in eq. (i), we get
I=∫π/20sin(π2−x)−cos(π2−x)1−sin(π2−x)cos(π2−x)dx
=∫π/20cosx−sinx1−sinxcosxdx
=−∫π/20(sinx−cosx1−sinxcosx)dx .....(ii)
On adding Eqs. (i) and (ii), we get
2I=∫π/200dx=0
⇒I=0