wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

π/20exsinxdx

Open in App
Solution

We have,

I=π20exsinxdx

Using I.IIdx=IIIdx(dIdxIIdx)dx

Now,

I=π20exsinxdx

I=sinxπ20exdxπ20(ddxsinx)π20exdxdx

I=sinx[ex]0π2π20(cosx)(ex)dx+C

I=sinxeπ2+e0π20excosxdx+C

I=1eπ2sinxcosxπ20exdxπ20(ddxcosx)π20exdxdx+C

I=1eπ2sinxcosx(ex)0π2π20sinx(ex)dx+C

I=1eπ2sinxcosx(ex)0π2+I+C

I=1eπ2sinxcosx(ex)0π2I+C

2I=1eπ2sinxcosxeπ2+e0+C

2I=1eπ2sinx1eπ2cosx+C

2I=1eπ2(sinxcosx)+C

I=1eπ2(sinxcosx)2+C2

I=1eπ2(sinxcosx)2+C

Hence, this is the answer.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 4
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon