We have,
I=∫π20e−xsinxdx
Using ∫I.IIdx=I∫IIdx−∫(dIdxIIdx)dx
Now,
I=∫π20e−xsinxdx
I=sinx∫π20e−xdx−∫π20⎡⎢⎣(ddxsinx)∫−π20e−xdx⎤⎥⎦dx
I=sinx[−e−x]0π2−∫π20(−cosx)(−e−x)dx+C
I=sinx⎡⎣−e−π2+e0⎤⎦−∫π20e−xcosxdx+C
I=⎛⎝1−e−π2⎞⎠sinx−⎡⎢⎣cosx∫π20e−xdx−∫π20⎡⎢⎣(ddxcosx)∫π20e−xdx⎤⎥⎦dx⎤⎥⎦+C
I=⎛⎝1−e−π2⎞⎠sinx−⎡⎢⎣cosx(−e−x)0π2−∫π20sinx(−e−x)dx⎤⎥⎦+C
I=⎛⎝1−e−π2⎞⎠sinx−⎡⎣cosx(−e−x)0π2+I⎤⎦+C
I=⎛⎝1−e−π2⎞⎠sinx−cosx(−e−x)0π2−I+C
2I=⎛⎝1−e−π2⎞⎠sinx−cosx⎡⎣−e−π2+e0⎤⎦+C
2I=⎛⎝1−e−π2⎞⎠sinx−⎛⎝1−e−π2⎞⎠cosx+C
2I=⎛⎝1−e−π2⎞⎠(sinx−cosx)+C
I=⎛⎝1−e−π2⎞⎠(sinx−cosx)2+C2
I=⎛⎝1−e−π2⎞⎠(sinx−cosx)2+C′
Hence, this is the answer.