wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

π/20dx(a2 cos2 x+b2 sin2 x)2

Open in App
Solution

π/20dx(a2 cos2 x+b2 sin2 x)2Let I= π/20dx(a2 cos2 x+b2 sin2 x)2Divide~ numerator~ and ~denominator~ by~we~ get cos4xI=π/20 sec4x dx(a2+b2 tan2x)2=π/20(1+tan2x) sec2x dx(a2+b2 tan2x)2Put tanx=tsec2x dx=dtAsx0, then t0andxπ2, then tI=0(1+t2)(a2+b2t2)2Now,1+t2(a2+b2t2)2 [lett2=u]1+u(a2+b2u)2=A(a2+b2u)+B(a2+b2u)21+u=A(a2+b2u)+Bon comparing the copefficient bt x and constant term on both sides we geta2A+B=1and b2A=1 A=1b2Now,a2b2+B=1B=1a2b2=b2a2b2I=0(1+t2)(a2+b2t2)2=1b20dta2+b2t2+b2a2b20dt(a2+b2t2)2=1b20dtb2(a2b2+t2)+b2a2b20dt(a2+b2t2)2=1ab3[tan1(tba)]0+b2a2b2(π4.1a3b)=1ab3[tan1tan10]+π4.b2a2(a3b3)=π2ab3+π4.b2a2(a3b3)=π(2a2+b2a24a3b3)=π4(a2+b2a3b3)


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon