∫π/20dx(a2 cos2 x+b2 sin2 x)2
∫π/20dx(a2 cos2 x+b2 sin2 x)2Let I= ∫π/20dx(a2 cos2 x+b2 sin2 x)2Divide~ numerator~ and ~denominator~ by~we~ get cos4xI=∫π/20 sec4x dx(a2+b2 tan2x)2=∫π/20(1+tan2x) sec2x dx(a2+b2 tan2x)2Put tanx=t⇒sec2x dx=dtAsx→0, then t→0andx→π2, then t→∞I=∫∞0(1+t2)(a2+b2t2)2Now,1+t2(a2+b2t2)2 [lett2=u]1+u(a2+b2u)2=A(a2+b2u)+B(a2+b2u)2⇒1+u=A(a2+b2u)+Bon comparing the copefficient bt x and constant term on both sides we geta2A+B=1and b2A=1∴ A=1b2Now,a2b2+B=1⇒B=1−a2b2=b2−a2b2∴I=∫∞0(1+t2)(a2+b2t2)2=1b2∫∞0dta2+b2t2+b2−a2b2∫∞0dt(a2+b2t2)2=1b2∫∞0dtb2(a2b2+t2)+b2−a2b2∫∞0dt(a2+b2t2)2=1ab3[tan−1(tba)]∞0+b2−a2b2(π4.1a3b)=1ab3[tan−1∞−tan−10]+π4.b2−a2(a3b3)=π2ab3+π4.b2−a2(a3b3)=π(2a2+b2−a24a3b3)=π4(a2+b2a3b3)