The correct option is D π216
I=∫π/20x sinx cos xcos4 x+sin4 xdx…(i)=∫π/20(π2−x)cosx sin xsin4x+cos4xdx…(ii) By adding (i) and (ii), we get2I=π2∫π/20cosx sin xcos4 x+sin4 xdx⇒I=π4∫π/20tanx sec2 x1+tan4xdxNow, put tan2x=t, we get
I=π4∫∞0dt2(1+t2)=π8[tan−1 t]∞0=π216