∫π/20√1−sin2x dx(a)2√2(b)2(√2+1)(c)2(d)2(√2−1)
I=∫π/20√1−sin2x dx=∫π/40√(cosx−sinx)2dx+∫π/2π/4√(sinx−cosx)2dx=[sinx+cosx]π/40+[−cosx−sinx]π2π4=1√2+1√2−0−1+(−0−1+1√2+1√2)=2√2−2=2(√2−1)