∫π/30[√3tanx]dx equal , where [.] denote greatest integer function
A
π4−tan−12√3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
3π4−tan−12√3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
4π3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
π2−tan−12√3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Dπ2−tan−12√3 Substitute √3tan0=0,√3tanπ3=3 ⇒x=0,1,2,3 ∴∫π30[√3tanx]dx=∫π60[√3tanx]dx =∫π60[√3tanx]dx+∫tan−12√3π6[√3tanx]dx+∫π3tan−12√3[√3tanx] =∫π600dx+∫tan−12√3π61dx+∫π3tan−12√32dx =0+tan−12√3−π6+2(π3−tan−12√3) =π2−tan−12√3 Ans: D