∫π/40cos xesinxdx is equal to (a) e + 1 (b) e - 1 (c) e (d) -e
Let I = I=∫π/20 cosx esinxdxPut sinx=t⇒cosx dx=dtAsx→0,thent→0andx→π/2,then t→1∴I=∫10etdt=[e1]10=e1−e0=e−1