wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

π/40(sinx+cosx)9+16sin2xdx

Open in App
Solution

I=π40sinx+cosx9+16sin2xdx
Let sinxcosx=t
(cosx+sinx)dx=dt
Again (sinxcosx)2=t2
sin2x+cos2x2sinxcosx=t2
1sin2x=t2
sin2x=1t2
When x=0t=sin0cos0=1
When x=π4t=sinπ4cosπ4=1212=0
I=01dt9+16(1t2)
=01dt9+1616t2
=01dt2516t2
=11601dt2516t2
=116⎢ ⎢ ⎢12×54log∣ ∣ ∣ ∣54+t54t∣ ∣ ∣ ∣⎥ ⎥ ⎥01
=14[110log5+4t54t]01
=140[log5+050log545+4]
=140[log1log(19)]
=140[0+log9]
=log940

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 7
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon