The correct option is A π8loge2
Let I=∫π/40log(1+tanx)dx.....(i)
⇒I=∫π/40log[1+tan(π4−x)]dx
[∵∫a0f(x)dx=∫a0f(a−x)dx]
=∫π/40log[1+1−tanx1+tanx]dx
=∫π/40log[21+tanx]dx$
=∫π/40log2dx−∫π/40log(1+tanx)dx
⇒I=log2[x]π/40−I [from Eq. (i)]
⇒2I=π4loge2
⇒I=π8loge2