The correct option is D (πlog2)8
∫π/40log(1+tanθ)dθ...(1)
I=∫π/40log(1+tan(π4−θ))dθ(∫a0f(x)dx=∫a0f(a−x)dx)
=∫π/40log(1+tan(π/4)−tanθtan(π/4)tanθ)dθ
=∫π/40log(21+tanθ)dθ=∫π/40[log2−log(1+tanθ)]dθ...(2)
Adding (1) and (2)
2I=∫π/40log(1+tanθ)dθ+∫π/40log2dθ−∫π/40log(1+tanθ)dθ
⇒2I=(π4−0)log2⇒I=π8log2