The correct option is
A π212To find the Integral of
Let ,
I=∫Π0xdx4cos2x+9sin2x --------> Equation 1
As we know that ,
∫baf(x)dx=∫baf(a+b−x)dx
I=∫Π0(Π−x)dx4cos2(Π−x)+9sin2(Π−x)
I=∫Π0(Π−x)dx4cos2x+9sin2x ------> Equation 2
On Adding Equation 1 and 2 we get
2I=∫Π0(Π−x+x)dx4cos2x+9sin2x
I=Π2∫Π0dx4cos2x+9sin2x
I=Π18∫Π0dx49cos2x+sin2x
I=Π18∫Π0sec2xdxtan2x+49
I=2Π18∫Π/20sec2xdx(tanx)2+(23)2
I=Π9∫Π/20sec2xdx(tanx)2+(23)2
Let tanx=t
So that sec2xdx=dt
When x=0,t=0
When x=Π2 , t=∞
Above Integral Becomes ,
I=Π9∫∞0dtt2+(23)2
I=Π6⎡⎢
⎢
⎢⎣tan−1⎧⎪
⎪
⎪⎨⎪
⎪
⎪⎩t23⎫⎪
⎪
⎪⎬⎪
⎪
⎪⎭⎤⎥
⎥
⎥⎦∞t=0
I=Π6×[Π2−0]
I=Π6×Π2
I=Π212