ByusingpropertyofinterjectionI=∫π0(π−x)sin2n(π−x)dx[sin2n(π−x)+cos2n(π−x)]⇒I=∫π0(π−x)sin2nxsin2nx+cos2nxdx.......(ii)Addingequation(i)and(ii)⇒2I=∫π0π(sinnx)2dx2I=∫π0π(sin2x)ndx2I=π2n∫π0(1−ncos2x)dxI=π2(n+1).[∫π0dx−n∫π0cos2xdx]I=π2n+1[π−n(sin2x2)π0]+cπ22n+1−nπ2(nπ2n+2)(sin2π−sin0)−+cπ22x+1−nπ2n+1×0+C∴π22(n+0)