1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Integration of Piecewise Continuous Functions
∫ -1 1 √ x+2 ...
Question
∫
1
−
1
√
(
x
+
2
x
−
2
)
2
+
(
x
−
2
x
+
2
)
2
−
2
d
x
A
8
l
n
4
3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
8
l
n
3
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
4
l
n
4
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
D
8
l
n
4
3
Given,
I
=
∫
1
−
1
√
(
x
+
2
x
−
2
)
2
+
(
x
−
2
x
+
2
)
2
−
2
d
x
=
∫
1
−
1
√
[
(
x
+
2
x
−
2
)
−
(
x
−
2
x
+
2
)
]
2
.
d
x
=
∫
1
−
1
∣
∣
(
x
+
2
x
−
2
)
−
(
x
−
2
x
+
2
)
∣
∣
.
d
x
=
∫
1
−
1
∣
∣
8
x
x
2
−
4
∣
∣
.
d
x
[
∴
8
x
x
2
−
4
i
s
e
v
e
n
f
u
n
c
t
i
o
n
=
2
∫
1
0
∣
∣
8
x
x
2
−
4
∣
∣
.
d
x
=
2
∫
1
0
−
8
x
x
2
−
4
.
d
x
=
−
8
∫
1
0
2
x
x
2
−
4
.
d
x
=
−
8
(
log
∣
∣
x
2
−
4
∣
∣
)
!
=
−
8
(
l
o
g
3
−
l
o
g
4
)
∴
8
log
(
4
3
)
S
o
t
h
e
c
o
r
r
e
c
t
o
p
t
i
o
n
i
s
A
Suggest Corrections
0
Similar questions
Q.
∫
1
−
1
{
(
x
+
2
x
−
2
)
2
+
(
x
−
2
x
+
2
)
2
−
2
}
1
2
d
x
=
Q.
Equation of the hyperbola passing through the point
(
1
,
−
1
)
and having asymptotes
x
+
2
y
+
3
=
0
and
3
x
+
4
y
+
5
=
0
is :
Q.
Prove that
∫
(
x
−
2
)
√
2
x
2
−
6
x
+
5
d
x
=
x
−
3
2
√
(
x
−
3
2
)
2
+
(
1
2
)
2
+
1
2
(
1
2
)
2
log
⎡
⎣
(
x
−
3
2
)
+
√
(
x
−
3
2
)
2
+
(
1
2
)
2
⎤
⎦
.
Q.
The equations of the assymptotes of the hyperbola
3
x
2
+
10
xy
+
8
y
2
+
14
x
+
22
y
+
7
=
0
are
.