∫21dx√(x−1)(2−x)
I=∫21dx√(x−1)(2−x)=∫21dx√2x−x2−2+x=∫21dx√x2−3x+2=∫21dx√−[x2−2.32x(32)2÷2−94]=∫21dx√−{(x−32)2−(12)2}=∫21dx√(12)2−(x−32)2=[sin−1(x−x−3212)]21=[sin−1(2x−3)]21=sin−11−sin−1(−1)=π2+π2 [∴sinπ2=1 and sin(−θ)=−sinθ]=π
∫xex(x+1)2dx=