No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
log|secx(secx+tanx)|+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
log∣∣secxsecx+tanx∣∣+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
log|cosx(secx+tanx)|+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Blog|secx(secx+tanx)|+c I=∫{1+2tanx(tanx+secx)}1/2dx=∫[1+2tan2x+2tanxsecx]1/2dx=∫(sec2x+tan2x+2secxtanx)1/2dx=∫(secx+tanx)dx=log(secx+tanx)+logsecx+c=log[secx(secx+tanx)]+c