∫a1x.a−[logax]dx=e−12, where a>1and [.] denotes the greatest integer function, then the value of a2is
e−1
e
e+1
e2−1
∵1<x<a⇒0<logax<1∴[logax]=0⇒∫a1x.a[logax]dx=∫a1xdx=[x22]a1=a2−12⇒a2−12=e−12∴a2=e