We have,
I=∫32x(x+2)(x+3)dx
From partial fraction,
x(x+2)(x+3)=A(x+2)+B(x+3)
Then, Solving and we get,
A=−2andB=3
Therefore,
I=∫32x(x+2)(x+3)dx=∫32−2(x+2)dx+∫323(x+3)dx
On integrating and we get,
I=∫32x(x+2)(x+3)dx=−2[log(x+2)]23+3[log(x+3)]23
I=∫32x(x+2)(x+3)dx=−2[log(3+2)−log(2+2)]+3[log(3+3)−log(2+3)]
I=∫32x(x+2)(x+3)dx=−2[log5−log4]+3[log6−log5]
I=∫32x(x+2)(x+3)dx=−2[log54]+3[log65]
Hence, this is the
answer.