∫ba1x dx=(log x log x)ba−∫ba1xlog x dx ⇒2I=[(log x)2]ba⇒I=12[(log b)2−(log a)2] =12[(log b+log a)(log b−log a)]=12log(ab)log(ba)
∫10e2 In xdx= [MP PET 1990]
∫x20log tan x dx= [MP PET 1994; RPET 1995, 96, 97]