Applying partial fractions in ∫1(x+2)(x+3)dx.
1(x+2)(x+3)=Ax+2+Bx+3
1=A(x+3)+B(x+2)
Put x=−3,
1=−B
B=−1
Put x=−2,
1=A
1(x+2)(x+3)=1x+2+(−1)x+3
∫1(x+2)(x+3)dx=∫1x+2dx−∫1x+3dx
=log|x+2|−log|x+3|+c
∫2x−1(x−1)(x+2)(x−3)dx