∫1−x2(1−2x)xdx
=∫x2−1x(2x−1)dx
=∫(x−22x(2x−1)+12)dx=12∫x−2x(2x−1)dx+12∫1dx−−−(1)∫x−2x(2x−1)dx=∫(2x−32x−1)dx=2∫1xdx−3∫12x−1dx−−−(2)∫12x−1dx
Now substitute
u=2x−1
dx=12du
=12∫1udu=ln(u)2=ln(2x−1)22∫1xdx−3∫12x−1dx=2ln(x)−3ln(2x−1)212∫x−2x(2x−1)dx+12∫1dx=−3ln(|2x−1|)4+ln(|x|)+x2+C