The correct option is D 12ln∣∣2x2+2x+1∣∣−2tan−1(2x+1)+c
12[∫2x+1x2+x+12dx−∫2x2+x+12dx]x2+x+12=t,x+12=u=x2+x+14=u2(2x+1)dx=dt,x+12=u12[∫dtt−2∫1u2+1udu]=12[ln|t|−2.(112)tan−1(u12)]+c=12ln|t|−2tan−12u+c=12ln∣∣x2+x+12∣∣−2tan−1(2x+1)+c=12ln∣∣2x2+2x+1∣∣−2tan−1(2x−1)+c=12ln∣∣2x2+2x+1∣∣−2tan−1(2x+1)+c1c1=c−12ln2