We have,
I=∫2x+7(x−4)2dx
Let t=x−4
dt=dx
Therefore,
I=∫2(t+4)+7t2dt
I=∫2t+8+7t2dt
I=∫2t+15t2dt
I=∫2tt2dt+∫15t2dt
I=ln(t2)−15t+C
On putting the value of t, we get
I=ln((x−4)2)−15(x−4)+C
Hence, this is the answer.