We have,
∫2xdx√1−x2−x4
⇒∫2xdx√1−x2−(x2)2
Suppose that,
x2=t
2xdx=dt
∫dt√1−t−t2
Making completing square denominator.
∫dt√1−t−t2+14−14
⇒∫dt√1+14−t−t2−14
⇒∫dt√54−(t+t2+14)
⇒∫dt√54−(t+12)2
⇒∫dt ⎷(√52)2−(t+12)2
Applying formula
∫1√a2−x2dx=sin−1xa
Then,
⇒∫dt ⎷(√52)2−(t+12)2=sin−1(t+12)(√52)
Put t=x2
∫2xdx√1−x2−x4=sin−1x2+12√52+C
=sin−12x2+1√5+C