wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

5x(x+1)(x24)dx

Open in App
Solution

5x(x+1)(x24)

5x(x+1)(x24)=5x(x+1)(x2)(x+2)

5x(x+1)(x24)=A(x+1)+B(x2)+C(x+2)

5x(x+1)(x24)=A(x2)(x+2)+B(x+1)(x+2)+C(x+1)(x2)(x+1)(x2)(x+2)

By cancelling denominator
5x=A(x2)(x+2)+B(x+1)(x+2)+C(x+1)(x2)
Putting x=1, in ( 1 )
5×(1)=A(12)(1+2)+B(1+1)(1+2)+C(1+1)(12)
5=A(3)(1)
A=53
Similarly, putting x=2, in ( 1 )
5(2)=A(22)(2+2)+B(2+1)(2+2)+c(2+1)(22)
10=A×0+B(3)(4)+C×0
10=12B
B=1012=56
Similarly putting x=2, in ( 1 )
5(2)=A(22)(2+2)+B(2+1)(2+2)+C(2+1)(22)
10=A×0+×0+C(1)(4)
10=4C
C=104=52
Therefore
5x(x+1)(x24)=(Ax+1+Bx2+Cx+2)dx

=53dxx+1dx+56dxx2dx52dxx+2

=53log|x+1|52log|x+2|+log|x2|+c


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Remainder Theorem
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon