∫5x(x+1)(x2−4)
5x(x+1)(x2−4)=5x(x+1)(x−2)(x+2)
5x(x+1)(x2−4)=A(x+1)+B(x−2)+C(x+2)
5x(x+1)(x2−4)=A(x−2)(x+2)+B(x+1)(x+2)+C(x+1)(x−2)(x+1)(x−2)(x+2)
By cancelling denominator
5x=A(x−2)(x+2)+B(x+1)(x+2)+C(x+1)(x−2)
Putting x=−1, in ( 1 )
5×(−1)=A(−1−2)(−1+2)+B(−1+1)(−1+2)+C(−1+1)(−1−2)
−5=A(−3)(1)
⇒ A=53
Similarly, putting x=2, in ( 1 )
5(2)=A(2−2)(2+2)+B(2+1)(2+2)+c(2+1)(2−2)
10=A×0+B(3)(4)+C×0
10=12B
⇒ B=1012=56
Similarly putting x=−2, in ( 1 )
5(−2)=A(−2−2)(−2+2)+B(−2+1)(−2+2)+C(−2+1)(−2−2)
−10=A×0+×0+C(−1)(−4)
−10=4C
C=−104=−52
Therefore
∫5x(x+1)(x2−4)=∫(Ax+1+Bx−2+Cx+2)dx
=53∫dxx+1dx+56∫dxx−2dx−52∫dxx+2
=53log|x+1|−52log|x+2|+log|x−2|+c