Consider the given integral.
I=∫6x+7(x−5)(x−4)dx
∫6x+7(x−5)(x−4)dx=∫(Ax−5+Bx−4)dx
6x+7=A(x−4)+B(x−5)
Put
x−4=0
x=4
So,
6×4+7=A×0+B(4−5)
24+7=−B
B=−31
Put}
x−5=0
x=5
So,
6×5+7=A(5−4)+B×0
30+7=A
A=37
Therefore,
I=∫(37x−5−31x−4)dx
I=37ln(x−5)−31ln(x−4)+C
Hence, the value is 37ln(x−5)−31ln(x−4)+C.