I=∫cosxcos3xdx=∫cosx4cos3x−3cosxdx=∫du4cos2x−3
I=∫dxcos2x[4−3cos2x]
=∫sec2xdx4−3sec2x
I=∫sec2xdx4−3(1+tan2x)=∫sec2xdx1−3tan2x
put tanx=t
sec2xdx=dt
∴I=∫dt1−3t2=∫dt(1+√3t)(1−√3t)
I=12∫[1(1−√3t)+1(1+√3t)]dt
I=12×[−1√3ln∣∣1−√3t∣∣+1√3ln∣∣1+√3t∣∣]+ln|c|
I=12√3ln∣∣∣1+√3t1−√3t∣∣∣+ln|c|
∴I=12√3ln∣∣∣1+√3tanx1−√3tanx∣∣∣+c
∫cosxcos3xdx=12√3ln∣∣∣1+√3tanx1−√3tanx∣∣∣+c