∫dx2sinx+cosx+3
=∫dx2⎛⎜
⎜⎝2tanx21+tan2x2⎞⎟
⎟⎠+1−tan2x21+tan2x2+3
=∫1+tan2x24tanx2+1−tan2x2+3+3tan2x2dx
=∫sec2x22tan2x2+4tanx2+4dx
Let t=tanx2⇒dt=12sec2x2dx
=2∫dt2t2+4t+4
=∫dtt2+2t+2
=∫dtt2+2t+1−1+2
=∫dt(t+1)2+1
=tan−1(t+1)+c
=tan−1(tanx2+1)+c where t=tanx2