We have,
∫dx3+2sinx+cosx
=∫dx3+2⎛⎜ ⎜⎝2tanx21+tan2x2⎞⎟ ⎟⎠+⎛⎜ ⎜⎝1−tan2x21+tan2x2⎞⎟ ⎟⎠
=∫(1+tan2x2)dx3(1+tan2x2)+2(2tanx2)+(1−tan2x2)
=∫sec2x2dx3(1+tan2x2)+2(2tanx2)+(1−tan2x2)
=∫sec2x2dx3+3tan2x2+4tanx2+1−tan2x2
=∫sec2x2dx4+2tan2x2+4tanx2
=12∫sec2x2dxtan2x2+2tanx2+2
=12∫sec2x2dxtan2x2+2tanx2+1+1
=12∫sec2x2dx(tanx2−1)2+1
Let
tanx2=t
12sec2x2dx=dt
sec2x2dx=2dt
=∫dt(t+1)2+(1)2
=tan−1(t+1)+C
=tan−1(tanx2+1)+C
Hence, this is the answer.