wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

dx3+2sinx+cosx

Open in App
Solution

We have,

dx3+2sinx+cosx

=dx3+2⎜ ⎜2tanx21+tan2x2⎟ ⎟+⎜ ⎜1tan2x21+tan2x2⎟ ⎟

=(1+tan2x2)dx3(1+tan2x2)+2(2tanx2)+(1tan2x2)

=sec2x2dx3(1+tan2x2)+2(2tanx2)+(1tan2x2)

=sec2x2dx3+3tan2x2+4tanx2+1tan2x2

=sec2x2dx4+2tan2x2+4tanx2

=12sec2x2dxtan2x2+2tanx2+2

=12sec2x2dxtan2x2+2tanx2+1+1

=12sec2x2dx(tanx21)2+1

Let

tanx2=t

12sec2x2dx=dt

sec2x2dx=2dt

=dt(t+1)2+(1)2

=tan1(t+1)+C

=tan1(tanx2+1)+C

Hence, this is the answer.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon