1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard IX
History
Machiavelli
∫dxx2 + 2x + ...
Question
∫
d
x
x
2
+
2
x
+
2
equals:
(
A
)
x
tan
−
1
(
x
+
1
)
+
C
(
B
)
tan
−
1
(
x
+
1
)
+
C
(
C
)
(
x
+
1
)
tan
−
1
x
+
C
(
D
)
tan
−
1
x
+
C
Open in App
Solution
∫
d
x
x
2
+
2
x
+
2
=
∫
d
x
x
2
+
2
x
+
1
+
1
=
∫
d
x
(
x
+
1
)
2
+
(
1
)
2
=
1
1
tan
−
1
x
+
1
1
+
C
[
∵
∫
1
x
2
+
a
2
d
x
=
1
a
tan
−
1
x
a
+
C
]
=
tan
−
1
(
x
+
1
)
+
C
Where C is constant of integration
∴
Option B is correct.
Suggest Corrections
0
Similar questions
Q.
equals
A.
x
tan
−1
(
x
+ 1) + C
B. tan
− 1
(
x
+ 1) + C
C. (
x
+ 1) tan
−1
x
+ C
D. tan
−1
x
+ C