The correct option is D 12[log(g(x)f(x))]2+C
I=∫f(x)g′(x)−f′(x)g(x)f(x)g(x)[log(g(x))−log(f(x))]dx
Put log(g(x))−log(f(x))=t
g′(x)g(x)−f′(x)f(x)dx=dt
f(x)g′(x)−f′(x)g(x)f(x)g(x)dx=dt
I=∫f(x)g′(x)−f′(x)g(x)f(x)g(x)[log(g(x))−log(f(x))]dx
I=∫tdt
I=t22
Subsituting t, we get
I=[log(g(x))−log(f(x))]22
This is same as option B.