wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

(3sinx2)cosx5cos2x4sinxdx

Open in App
Solution

Given equation is,
I=(3sinx2)cos x5cos2x4sinxdx

=(3sinx6+4)cos x4+1cos2x4sinxdx

=[3cos x(sinx2)]+4cos x4+sin2x4sinxdx

=[3cos x(sinx2)]+4cos x(sinx2)2dx

Let,
t=sinx

dt=cosxdx

=[3(t2)+4](t2)2dt

=3(t2)dt+4(t2)2dt

=3log|t2|+412+1×1t2+c

=3log|2t|4t2+c

=3log|2sinx|+42sinx+c

Hence, 3log|2sinx|+42sinx+c


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon