Let I=∫sin2x(1+sinx)(2+sinx)dx
I=∫sin2xcosx(1+sinx)(2+sinx)dx
put sinx=t
cosxdx=dt
I=∫2tdt(1+t)(2+t)
∫2tdt(1+t)(2+t)=A(1+t)+B(2+t)
2t=A(2+t)+B(1+t)
2t=2A+At+B+Bt
2t=(A+B)t+2A+B
comparing the coefficients,
A+B=2⟹(1)
comparing constants,
2A+B=0⟹(2)
Subtracting (1) from (2)
A=−2
B=4
2t(1+t)(2+t)=−2(1+t)+4(2+t)
By integrating,
∫2t(1+t)(2+t)dt=−2∫dt(1+t)+4∫dt(2+t)=−2log|1+t|+4log|2+t|+C
I=−2log|1+sinx|+4log|2+t|+C