We have,
∫sin2xsin4x+cos4xdx
=∫2sinxcosxsin4x+cos4xdx
=∫2sinxcosxcos4xsin4x+cos4xcos4xdx
=∫2sinxcosxcos4xsin4xcos4x+cos4xcos4xdx
=∫2sinxcos3xtan4x+1dx
=∫2tanxsec2xtan4x+1dx
=∫2tanxsec2x(tan2x)2+1dx
Let tan2x=t
Then,
2tanxsec2xdx=dt
We know that,
∫dx1+x2=tan−1x
=tan−1t+C
=tan−1(tan2x)+C