wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

sin4x+cos4xsin3xcosxdx,x(0,π2)

Open in App
Solution

sin4x+cos4xsin3xcosx
(sin2x+cos2x)22sin2x×cos2x= sin4x+cos4x
(12sin2xcos2x)=sin4xcos4x
12sin2xcos2xsin3xcosxdx
Putting sinx= tanxsecx
cosx=1secx
( sec2x)(tan2x+1) 12tan2x(tan2x+1)2dxtan3x
Putting tanx=m
sec2xdx=dm
m2+112m2(m2+1)2m3dm
2m(m2+1)12m2(m2+1)22m4dm
Putting m2=t
2mdm=dt
(t+1)12t(t+1)22t2dt Taking (t+1) inside the root
(t+1)22t2t2dt=t2+12t2dt
Integrating by parts
f=t2+1,g1=1t2
dfdt=tt2+1;g=1t
=t2+12t+121t2+1dt Standard integral
=t2+12t+12In(t2+1+t)+c
=12Inm4+1+m2m4+12m2+c=12Intan4x+1+tan2xtan4x+12tan2x+c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 4
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon