1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Property 4
∫√sin4x + cos...
Question
∫
√
sin
4
x
+
cos
4
x
sin
3
x
cos
x
d
x
,
x
∈
(
0
,
π
2
)
Open in App
Solution
∫
√
sin
4
x
+
cos
4
x
sin
3
x
cos
x
(
sin
2
x
+
cos
2
x
)
2
−
2
sin
2
x
×
cos
2
x
=
s
i
n
4
x
+
cos
4
x
(
1
−
2
sin
2
x
cos
2
x
)
=
sin
4
x
cos
4
x
⇒
∫
√
1
−
2
sin
2
x
cos
2
x
sin
3
x
cos
x
d
x
Putting
sin
x
=
t
a
n
x
sec
x
cos
x
=
1
sec
x
∫
(
s
e
c
2
x
)
(
tan
2
x
+
1
)
⎷
1
−
2
tan
2
x
(
tan
2
x
+
1
)
2
d
x
tan
3
x
Putting
tan
x
=
m
s
e
c
2
x
d
x
=
d
m
∫
m
2
+
1
√
1
−
2
m
2
(
m
2
+
1
)
2
m
3
d
m
⇒
∫
2
m
(
m
2
+
1
)
√
1
−
2
m
2
(
m
2
+
1
)
2
2
m
4
d
m
Putting
m
2
=
t
2
m
d
m
=
d
t
⇒
∫
(
t
+
1
)
√
1
−
2
t
(
t
+
1
)
2
2
t
2
d
t
Taking
(
t
+
1
)
inside the root
⇒
∫
√
(
t
+
1
)
2
−
2
t
2
t
2
d
t
=
∫
√
t
2
+
1
2
t
2
d
t
Integrating by parts
⇒
f
=
√
t
2
+
1
,
g
1
=
1
t
2
d
f
d
t
=
t
√
t
2
+
1
;
g
=
−
1
t
=
−
√
t
2
+
1
2
t
+
1
2
∫
1
√
t
2
+
1
d
t
→
Standard integral
=
−
√
t
2
+
1
2
t
+
1
2
I
n
(
√
t
2
+
1
+
t
)
+
c
=
1
2
I
n
∣
∣
√
m
4
+
1
+
m
2
∣
∣
−
√
m
4
+
1
2
m
2
+
c
=
1
2
I
n
∣
∣
√
t
a
n
4
x
+
1
+
t
a
n
2
x
∣
∣
−
√
t
a
n
4
x
+
1
2
t
a
n
2
x
+
c
Suggest Corrections
0
Similar questions
Q.
Find the intervals in which the function
f
(
x
)
=
sin
4
x
+
cos
4
x
∀
x
∈
[
0
,
π
/
2
]
is increasing and decreasing.
Q.
The minimum value of
f
(
x
)
=
s
i
n
4
x
+
c
o
s
4
x
,
0
≤
x
≤
π
2
is