wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

x2(xsinx+cosx)2dx

Open in App
Solution

I=x2(xsinx+cosx)2dx
=x2cosxcosx(xsinx+cosx)2
=xcosxxcosx(xsinx+cosx)2dx
Let xcosx=I function xcosx(xsinx+cosx)2=II function
Now,
xcosxdx(xsinx+cosx)2
Let xsinx+cosx=t
(xcosx+sinxsinx)=dt/dx
xcosxdx(xsinx+cosx)2=dtt2=tt=1xsinx+cosx
Now,
I=xcosxxcosx(xsinx+cosx)2+(cosx1+xsinx)(cosx)2×1(xsinx+cosx)dx
=xcosxxcosx(xsinx+cosx)2dx+sec2xdx
=xcosx×(1xsinx+cosx)+tanx+c
=xcosx(xsinx+cosx)+tanx+c.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Standard Formulae 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon