Consider the given integral.
I=∫x5x2+9dx
Let,
t=x2+9
dt=2xdx
Therefore,
I=12∫(t−9)2tdt
I=12∫t2+81−18ttdt
I=12∫(t+81t−18)dt
I=12[t22+81ln(t)−18t]+C
Put the value of t, we get
I=12⎡⎣(x2+9)22+81ln(x2+9)−18(x2+9)⎤⎦+C
Hence, the value of this expression is 12⎡⎣(x2+9)22+81ln(x2+9)−18(x2+9)⎤⎦+C