I=∫x(x−1)(x−2)We can write,
x(x−1)(x−2)=A(x−1)+B(x−2)
−A(x−2)+B(x−1)(x−1)(x+2)
∴x=A(x−2)+B(x−1) ............ (1)
Putting x=1 in (1)
1=A(−1)+0⇒A=−1
Putting a=2 in (1)
2=0+B(1)⇒B=2
∴T=∫x(x−1)(x−2)=∫{−1x−1+2x−2}dx
=∫dxx−1+2∫xx−2
=−log|x−1|+2log|x−2|+C
where c=constant of integration