Consider the given integral.
I=∫etan−1x1+x2dx
Let t=tan−1x
dt=dx1+x2
Therefore,
I=∫etdt
I=et+C
On putting the value of t, we get
I=etan−1x+C
Hence, this is the answer.
∫etan−1x(1+x+x2).d(cot−1x) is equal to