No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
etanθsinθ+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
etanθsecθ+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
etanθcosθ+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Detanθcosθ+c Let I=∫etanθ(secθ−secθ)dθ Substitute tanθ=t⇒sec2θdθ=dt ∴I=∫et(cosθ−tanθsecθ)dt =∫et(1√1+t2−t√1+t2)dt As ddx(1√1+t2)=t√1+t2 ∴I=et(1√1+t2)=etanθcosθ+c