∫(11+cotx)dx
∫(11+cosxsinx)dx∫2z1+z2(2z1+z2+1−z21+z2).(2dz1+z2)
Simplify
∫2z1+z2(2z1+z2+1−z21+z2).(2dz1+z2)∫4z(z2+2z+1)(z2+1).dz∫−4z(z2+1)(z2+2z−1).dz
At this point, use Partial Fractions then integrate
∫−4z(z2+1)(z2−2z−1).dz=∫(Az+Bz2+1+Cz+Dz2−2z−1)dz
We do the Partial Fractions first
−4z(z2+1)(z2−2z−1)=Az+Bz2+1+Cz+Dz2−2z−1−4z(z2+1)(z2−2z−1)=(Az+B)(z2−2z−1)+(Cz+D)(Cz+D)(z2+1)(z2+1)(z2−2z−1)
Expand the right side of the equation
−4z(z2+1)(z2−2z−1)=Az3−2Az2−Az+Bz2−2Bz−B+Cz3+Dz2+Cz+D(z2+1)(z2−)(z2−2z−1)
Set up the equations
0.z3+0.z2−4.z+0.z∘(z2+1)(z2−2z−1)
(A+C).z3+(−2A+B+D).z2+(−A−2B+C).z+(−B+D).z0)(z2+1)(z2−2z−1)
The equations are
A+C=0−2A+B+D=0−A−2B+C=−4−B+D=0
Simultaneous solution result to
A = 1 and B = 1 and C = - 1 and D = 1
We can now do the integration
∫−4z(z2+1)(z2−2z−1).dz=∫(Az+Bz2+1+Cz+Dz2−2z−1)dz=∫(z+1z2+1+−z+1z2−2z−1)dz=
12∫2zz2+1dz+∫dzz2+1−12∫2z−2z2−2z−1dz=12.In(z2+1)+tan−1z−12.In(z2−2z−1)=12.In(z2+1z2−2z−1)+tan−1z