wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

(11+cotx)dx

    Open in App
    Solution

    (11+cotx)dx
    (11+cosxsinx)dx2z1+z2(2z1+z2+1z21+z2).(2dz1+z2)
    Simplify
    2z1+z2(2z1+z2+1z21+z2).(2dz1+z2)4z(z2+2z+1)(z2+1).dz4z(z2+1)(z2+2z1).dz
    At this point, use Partial Fractions then integrate
    4z(z2+1)(z22z1).dz=(Az+Bz2+1+Cz+Dz22z1)dz
    We do the Partial Fractions first
    4z(z2+1)(z22z1)=Az+Bz2+1+Cz+Dz22z14z(z2+1)(z22z1)=(Az+B)(z22z1)+(Cz+D)(Cz+D)(z2+1)(z2+1)(z22z1)
    Expand the right side of the equation
    4z(z2+1)(z22z1)=Az32Az2Az+Bz22BzB+Cz3+Dz2+Cz+D(z2+1)(z2)(z22z1)
    Set up the equations
    0.z3+0.z24.z+0.z(z2+1)(z22z1)
    (A+C).z3+(2A+B+D).z2+(A2B+C).z+(B+D).z0)(z2+1)(z22z1)
    The equations are
    A+C=02A+B+D=0A2B+C=4B+D=0
    Simultaneous solution result to
    A = 1 and B = 1 and C = - 1 and D = 1
    We can now do the integration
    4z(z2+1)(z22z1).dz=(Az+Bz2+1+Cz+Dz22z1)dz=(z+1z2+1+z+1z22z1)dz=
    122zz2+1dz+dzz2+1122z2z22z1dz=12.In(z2+1)+tan1z12.In(z22z1)=12.In(z2+1z22z1)+tan1z

    flag
    Suggest Corrections
    thumbs-up
    0
    Join BYJU'S Learning Program
    similar_icon
    Related Videos
    thumbnail
    lock
    Geometric Progression
    MATHEMATICS
    Watch in App
    Join BYJU'S Learning Program
    CrossIcon