LHS.
We have,
∫dx√x2−a2
We will use put
x=asecθ
Thus, on differentiating and we get,
dx=asecθtanθdθ
Then,
∫asecθtanθdθ√a2sec2θ−a2
⇒∫asecθtanθdθa√sec2θ−1
⇒∫secθtanθdθ√sec2θ−1
⇒∫secθtanθdθtanθ(sec2θ−1=tan2θ)
⇒∫secθdθ
⇒log(secθ+tanθ)+C
Now, from
=log(xa+√x2−a2a)+C
=log(x+√x2−a2a)+C
=log(x+√x2−a2)−loga+C
=log(x+√x2−a2)+C
Where, 1a term can be factored from both of these
Hence, this is the answer.