Byju's Answer
Standard XII
Mathematics
Second Fundamental Theorem of Calculus
∫1+x+√x+x2/√x...
Question
∫
1
+
x
+
√
x
+
x
2
√
x
+
√
1
+
x
d
x
=
A
(
1
+
x
)
3
2
+
c
then A =
A
3
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2
3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
−
3
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
B
2
3
∫
(
√
1
+
x
)
2
+
√
x
√
1
+
x
d
x
√
x
+
√
1
+
x
=
∫
√
1
+
x
(
√
1
+
x
+
√
x
)
(
√
1
+
x
+
√
x
)
d
x
=
(
1
+
x
)
3
2
3
2
+
C
∴
A
=
2
3
Suggest Corrections
1
Similar questions
Q.
∫
(
x
−
1
)
(
x
+
1
)
√
x
3
+
x
2
+
x
d
x
Q.
lf
(
1
+
x
)
(
1
+
x
+
x
2
)
(
1
+
x
+
x
2
+
x
3
)
…
+
(
1
+
x
+
x
2
+
.
.
x
n
−
1
)
=
a
o
+
a
1
x
+
a
2
x
2
+
.
.
a
m
m
x
m
, then
a
0
+
a
1
+
a
2
+
…
…
…
+
a
m
=
Q.
∫
(
x
+
a
)
3
x
3
+
1
−
x
4
1
−
x
−
7
x
√
x
2
−
1
+
x
+
2
(
x
+
1
)
2
+
(
1
+
x
)
3
√
x
d
x
is equal to
Q.
Evaluate
∫
(
x
−
1
)
(
x
+
1
)
√
x
3
+
x
2
+
x
d
x
.
Q.
Evaluate
∫
x
−
1
(
x
+
1
)
√
x
3
+
x
2
+
x
d
x
View More
Explore more
Second Fundamental Theorem of Calculus
Standard XII Mathematics
Solve
Textbooks
Question Papers
Install app